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Geometric superfield approach to superconformal mechanics 

E Ivanov, S Krivonos and V Leviant 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Head Post Office, 
PO Box 79, Moscow 101000, USSR 

Received 24 January 1989 

Abstract. The new general geometric approach to d = 1 conformally invariant systems, 
previously elaborated by us with an example of conformal mechanics, is applied in the 
supersymmetry case. We construct a manifestly invariant superfield description of the 
superconformal mechanics (SCM) models for arbitrary even N, N being a number of 
independent real d = 1 Poincart supersymmetries. These systems are shown to result from 
non-linear realisations of d = 1 superconformal groups SU(1, 11 N / 2 )  in the cosets 
SU( 1 , l l  N / 2 ) / U (  N / 2 ) .  For the N = 4 case, which has previously been worked out only 
on shell, we find two different off-shell formulations related via a duality transformation. 
The systems with higher N are essentially new. An effect of creating the U(1) central 
charge in the d = 1, N = 4 superconformal algebra su( 1, 1 12) by the duality transformation 
is revealed. By extending the procedure employed in the bosonic case we derive general 
superfield solutions of the N = 2 and N = 4 SCM equations. 

1. Introduction 

Conformal mechanics [ 11 and its supersymmetric extensions [2 ,3]  (hereafter referred 
to as CM and SCM) are instructive to explore for several reasons. Being d = 1 prototypes 
of conformal field theory, these systems offer an appropriate laboratory for getting 
some insight into the structure of conformal theories in higher dimensions. Further- 
more, they provide non-trivial examples of the particle and superparticle models which 
have recently received much attention as the toy models for strings and superstrings. 
It is also worth recalling that different versions of supersymmetric quantum mechanics 
[4-71 describe non-trivial reductions of some four-dimensional theories of interest, 
such as supersymmetric Yang-Mills and supergravity theories [5,6], and may bear a 
deep relation to more realistic models [7]. 

In the previous paper [8], we have found that the purely bosonic CM exhibits 
interesting geometric features. Its field equation can be interpreted as defining a class 
of geodesics in the group space of d = 1 conformal group S0(1,2) .  Thus, there was 
revealed an intimate relation between CM and the geometry of group S0(1,2).  Our 
consideration relied heavily upon the d = 1 version of the covariant reduction method 
which was originally invented by us to deduce new superextensions of the d = 2 
Liouville and Wess-Zumino-Novikov-Witten models [ 9 ] .  As has been mentioned in 
[8], this approach admits an immediate generalisation to the d = 1 supersymmetry 
case, where it can be used to construct manifestly invariant superfield formulations of 
the known SCM models and to set up new models of this kind. To date, merely the 
N = 2 and N = 4 SCM? were known, the latter one only in component form. 

t By N we denote the number of real d = 1 Poincart supercharges. So N = 2 and N = 4 in our terminology 
correspond to N = 1 and N = 2 of [2-61. 
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In the present paper we study implications of the d = 1 covariant reduction tech- 
niques for the SCM models. These systems prove to be related to the geometry of 
appropriate coset manifolds of d = 1 superconformal groups. In particular, the 
superfield equations of N = 2 and N = 4 SCM are shown to single out the (1 12)- and 
(1 14)-dimensional geodesic subspaces in the coset manifolds SU( 1,1 I 1)/U( 1) and 
SU(1, 1 /2)/SU(2),  respectively. We present, for the first time, two different off-shell 
superfield formulations of N = 4 SCM. They are related via a d = 1 duality transforma- 
tion. One of those yields the known component version of N = 4 SCM [3], while the 
other gives rise to a different version. One more new result is the construction of 
previously unknown higher- N SCM models. They are associated with cosets 
SU(1 , l  IN/2)/U(N/2) ( N  even). We derive the relevant equations of motion, both 
in the superfield and component forms, and write down the invariant physical com- 
ponent actions. 

The paper is organised as follows. In § 2, we briefly review the d = 1 covariant 
reduction method in application to the bosonic CM model ( N  = O  SCM). In 5 3, the 
basic peculiarities of supersymmetric generalisation of our procedure are illustrated 
by a simple example of N = 2 SCM. The geometric superfield formulations of N = 4 
SCM are constructed in § §  4 and 5. Some unusual features of the d = 1 duality 
transformation are discussed, among them the creation of an operator central charge 
in d = 1, N = 4 superconformal algebra. In 0 6, we explain how to get the general 
superfield solutions of the SCM equations in the geometric formalism. Section 7 deals 
with higher-N SCM models. Section 8 collects concluding remarks. In particular, an 
interpretation of the SCM equations as integrability conditions is presented. Appendices 
1 and 2 treat some technical points. 

2. Preliminaries: conformal mechanics 

Before considering the supersymmetry case we recall basic facts about the geometry 
of purely bosonic CM [l] following our paper [8]. 

The action and field equations of this d = 1 model are 

S=A.-’ dt(( , j )2-m2p-2)  [ A  ’3 = cm-I, [ m’] = cm-2 (2.1) 

(2.2) b( t )  = m’p-3. 

St  = a + bt+ ct2 = : f ( t )  S d t )  =”) (2.3) 

i[Lfl, L,1= ( n  - m)L,,+, (2.4) 
The basic observation of [8] was that equation (2.2) can be deduced in a purely 

geometric way, starting with a non-linear realisation of group S0(1,2) .  Consider an 
element of S0(1 ,2)  parametrised as 

I 
They are invariant under d = 1 conformal transformations: 

generators of which form the d = 1 conformal algebra so( l ,2) :  

n, m = -1, 0, 1. 

g(t, z ( t ) ,  u ( t ) ) =  exp(itL-,) exp(iz(t)L,) exp(iu(t)L,). (2.5) 
Left action of S0(1 ,2)  on these elements produces for t and p( t )=exp(fu( t ) )  just 
transformations (2.3). Further, let us construct Cartan 1-forms: 

g-’ dg = iw,L, (2.6) 
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and impose on them the convariant reduction constraint: 

~ , L , = ~ _ ~ ( L _ , S - ~ ~ L ~ ) ~ ~ _ ~ R ~ ~   RES SO(^). (2.7) 

This condition amounts to the set of equations on the group parameters 

z (  t )  = p - ' p  

i( t )  + (z(  t ) ) ' =  m2p-4 

which is easily recognised to be equivalent to (2.2). 
Conditions (2.7) and (2.8) have a transparent geometric meaning. In the S0(1 ,2)  

group manifold {t, z, U} they single out a curve which is produced from an arbitrary 
fixed point of the manifold by the right action of the one-parameter subgroup SO(2) 
with generator Ro.  Such curves are known to be geodesics [lo]. Thus, (2.8) and, 
hence, the CM equation (2.2) define a class of geodesics in the SO( 1,2) group manifold. 
These geodesics are represented by the S0(1 ,2)  group elements of a special form 

g i l  dgR=iWR ( 2 . 9 ~ )  

gR= gO(Cl9 c 2 )  exp(iTRO) (2.9b) 

go being a representative of the coset S0(1,2) /S0(2)  and c1, c2 arbitrary constant coset 
parameters. These constants, together with the coupling constant m, specify an initial 
point on the geodesic and the tangent vector at this point, while T is the natural 
parameter (proper time) along the curve. Expression (2.9b) furnishes equation (2.2) 
with the general solution and so gives a purely geometric method of integrating this 
equation. 

It is straightforward to adapt the above construction for obtaining supersymmetric 
extensions of equation (2.2). One has to enlarge S0(1 ,2)  to an appropriate d = 1 
superconformal group, to construct a non-linear realisation of the latter and to single 
out, in the relevant supergroup manifold, a geodesic submanifold which properly 
extends geodesic (2.9). 

3. N = 2 superconformal mechanics 

As a first non-trivial example of the application of our procedure to supersymmetric 
d = 1 systems we will reproduce here, on purely geometric grounds, the superfield 
formulation of N = 2 SCM [2]. 

The algebra of the d = 1, N = 2 superconformal group is the Lie superalgebra 

i [ L ,  Lml = ( n  - m ) L n + m  ( 3 . 1 ~ )  

{ G,, d4}  = -2L,+, - 2( r - q )  T (3 . lb)  

i [ L ,  G I =  (fn - r )Gn+r  ( 3 . 1 ~ )  

i[ T, G,] = fG, i[T, d,] = -idr (3 . ld)  

[ T  L I = { G r ,  Gq}={Gr, Gq>=O (3.le) 

( n , m = - l , O , I ;  r , q = z t f ) .  

s u ( l , l ~ l ) - o s p ( 2 ~ 2 )  [ l l l t  

i[L,, G,] = (fn - r )d ,+,  

t The simplest superextension of S0(1 ,2)  is the supergroup Osp(211) corresponding to N = 1, d = 1 
superconformal symmetry. However, no non-trivial N = 1 extension of (2.2) exists. 
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Besides the d = 1 conformal generators L, ,  this superalgebra includes the d = 1, N = 2 
PoincarC supersymmetry generators G-,/2,  the generators GI /* ,  GI,, of super- 
conformal boosts, and the internal U( 1) automorphism generator T 

In constructing non-linear realisations of SU( 1 , l l  l ) ,  we adopt the following two 
natural requirements. 

(i) We wish to have a manifest d = 1, N = 2 supersymmetry. So the time coordinate 
t associated with the generator L-, has to be completed to the d = 1, N = 2 superspace 
{ t ,  6, e}, with 6, e being mutually conjugated Grassmann coordinates appearing as the 
supergroup parameters associated with the PoincarC supersymmetry generators G-,,2, 
e-,/*. All the other SU( 1,111) parameters are regarded as superfields defined on this 
superspace. 

(ii) Hereafter, our main interest will be in the maximally invariant situations when 
the internal symmetry (U(1) in the present case) is realised linearly. So we are led to 
consider a realisation of S U ( 1 , l l l )  in the quotient SU(1, 1 l l ) / U ( l ) .  

With these remarks in mind, we implement SU( 1, 11 1) as the left shifts of elements 
of the coset SU( 1 , l  I l ) /U( 1) 

G (  t, 6, 8) = exp(itL-,) exp( 6G_,,,+ eG-1,2) exp(izl , )  exp(SG,,,+ $GI/*) exp(iuL,) 
(3.2) 

z = z ( t , e , J )  U = u ( t ,  6,  e) 5 = 5 ( t ,  6, e). 
Under this choice of parametrisation, the superspace { t, 6, e} and the dilaton superfield 
u ( t ,  6, e) transform with respect to the left SU(1,1/1)  shifts as 

S t =  E ( t ,  6, e)+&qDE-&ODE 

SO =4iDE(t, 6, e) S e =  - f iDE( t ,  6, e) (3.3) 

8 u ( t , 6 , B ) = E ( t , 6 , 8 )  (3.4) 

{ D, D }  = -2ia/at D 2 = D 2 = 0  (3.5) 

where D = 8/86 + iea/at, D = -a lae -  i o a l a t  are covariant spinor derivatives: 

and E ( t ,  6, e) is a superfunction, collecting all the infinitesimal parameters of d = 1, 
N = 2 superconformal transformations: 

E (  t, 6, e) =f( t )  - 2i( E + P t ) e -  2i( E + p t ) ~  + (3.6) 

Here f ( t )  is already defined in (2.3), E ,  P and h are, respectively, the parameters of 
two supersymmetries and U( 1) rotations. Note that E (  t, 6, e)  defines the superconfor- 
mal transformation of the supercovariant differential A t :  

At=dt+iO d e - i d 6 e  

SAt = E A t .  
(3.7) 

For a reason to be made clear later, we do not need to know the explicit form of 
transformations of the remaining coset parameters z and 5. 

To put in force the covariant reduction method, we have first to define the corre- 
sponding covariant Cartan 1-forms. This can be done by the familiar recipe of [12]: 

G-' d G  = iw,L, + p,G, + iirGr + vT = isZ E su( 1,111) (3.8) 
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=e-"(d t - idBe+ie  dG)=e-"At 

o , = d u  -2zAt -2i de[-2i d6f 

w I = e [ d z - i (d .$g - [ d f )  + 2i (d e l  - [ d e )  z + z2  A t ] 

p-l/2 = e-"/2[d6 -[At] 

pIl2 = e"/'(d[ - z d e  -i t$ d e  + z[At) 
/---1/2 = ( / - - I / * ) +  

/--1/2 = ( P l , d +  

~=2de[-2def+2[cAt .  

(3.9) 

These 1-forms are defined up to arbitrary gauge U ( l )  transformations realised as the 
right shifts of elements (3.2) (the parametrisation we are using corresponds to a 
particular fixing of this gauge freedom). 

It remains to find out how to extend the constraint (2.7). In the present case the 
coset parameters in (3.2) are restricted to d = 1, N = 2 superspace ( t ,  6, e), so these 
define a (1 I2)-dimensional hypersurface in SU( 1,1 I 1)/U( 1). The corresponding 
geodesic submanifold should be a special case of this hypersurface parametrised by 
the proper time T already defined in (2.9b) and appropriate Grassmann variables 7, i j .  
The parameter T appears as a coordinate associated with the SO(2) generator Ro, so 
7, i j  should be associated with the fermionic generators promoting Ro to a graded 
subalgebra of su( 1 , 1  I 1). This subalgebra is unambiguously extracted to be 

(3.10) 
- -  

X R = ( r =  G-112+imG,12,T= G-l/2-imG1,2, R,, T)  
{r, T}= -2Ro-4imT {r, r} = {T, i?} = o  
[r, R,] = mT [r, R,] = - m r  (3.11) 

[r, T ]  = t i r  
As a crucial step, we are now led to put equal to zero all the Cartan forms except for 
those belonging to superalgebra (3.10) 

[T, TI = -$T, 

R = R R E  %'R+ 

wo=o  
(3.12) 

w 1  = mi@-] 

P l / 2  = imP-l/z P1/2 = -imF-1/2. 
The set (3.12) is manifestly covariant with respect to both the left SU(1, 1 11) shifts 
and the right gauge U ( l )  shifts. Note that these constraints agree with the original 
Maurer-Cartan equation for the su(1, l  Il)-valued 1-form (3.8). Actually, the surviving 
form R R  satisfies a closed Maurer-Cartan equation on the subalgebra XR. 

The 1-forms (3.9) involve the differentials of Grassmann variables de, d e  together 
with dt. Therefore, constraints (3.12) result in a larger number of equations for the 
coset parameters as compared with the bosonic case (2.7) and (2.8). Now we have 

(3.13) 

(3.14) 
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Thus, as in the CM case, all the superfield coset parameters are expressed via a single 
object, this time the dilaton superfield U (  r, 8, e). As we have started from the covariant 
constraints (3.12), the expressions (3.13) are guaranteed to agree with the original 
transformation properties of 6 and z. One may, if one wishes, derive these transforma- 
tions using (3.13) and the transformation laws (3.3) and (3.4). 

Equation (3.14) is dynamical and it is just the N = 2 superextension of (2.2). Its 
identity to the one given in [2] becomes evident after passing to real Grassmann 
variables 8’ = ;( g +  e), O 2  = $( e- e) .  In components, it amounts to the set 

(3.15) 

where we have defined 
p =  yl*=o CC, = iDY(o,o 3 = -iDYle=o F = [D,  B] YI,=o. (3.16) 

The invariant action giving rise to (3.14) and (3.15) is 

S =  -1 - 2  1 dt  dB de(DYBYS2m In Y) 

= -’ d t [ f ( p ) - t i  $4 + f i I,& + m $$p -2  + F2 - 4 mFp - ’ 1. J (3.17) 

Superconformal invariance of this action can be checked most readily in the superfield 
notation, using the transformation rules 

1 -  
S D = y ( D D E ) D  1 S D = y ( D D E ) D  

21 21 

S(dt dB de )  = O .  
(3.18) 

The transformation laws of the component fields follow from definition (3.16). 
We postpone the discussion of the geometric meaning of equations (3.14) and 

(3.15) to 9 6 where the general superfield solutions of N = 2 and N = 4 SCM will be 
obtained by extending the procedure employed in the bosonic case. 

Before closing this section, we shall describe an equivalent formulation of N = 2 
SCM in terms of complex N = 2 chiral superfieldt. This formulation is a prototype of 
dual complex formulation of N = 4 SCM that will be discussed in 9 5. 

The possibility to define d = 1, N = 2 chiral superfields in a superconformally 
covariant way is related to the existence of chiral d = 1, N = 2 superspaces closed 
under superconformal transformations: 

( t L ,  e ) ,  (tR, e) t L =  t + i e e  t R =  ( t L )  = t -io0 (3.19) 
S t L = E ( t ,  e, e)+&BE =f(fL)-2i(E+ptL)e 

(3.20) 
se=fiDE = E+ptL+f(f+ih)8.  

Within our scheme there is a natural place for appearance of chiral superfields as 
the SU( 1, 11 1) coset parameters. 

Let us include the U( l )  generator T in the coset, i.e. consider the situation when 
SU(1, 11 1) is realised by the left shifts in its whole group manifold. Then there appears 
a new superfield parameter associated with the generator T: 

G-,Gexp(cp(t,O,B)T). (3.21) 

- - 

t Description of supersymmetric mechanics via d = 1 chiral superfields as an alternative to the real superfield 
description [4-61 was proposed in [13]. 
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A net effect of this modification is the shift of the inhomogeneously transforming 
Cartan form Y in (3.9) by dqo 

v ” =  v + d q  (3.22) 
which makes v” entirely invariant under the left action of SU(1, 1 11). Owing to the 
latter property, we are free to add to set (3.12) one more constraint: 

v” = 2imw-, (3.23) 
while preserving the SU( 1, 1 I 1) invariance. The meaning of this constraint is that one 
is finally left with the Cartan forms corresponding to the generators r, and R0+2imT. 
As follows from (3.1 l ) ,  these generators constitute a closed subalgebra while the 
generator T may be regarded as producing external automorphisms of fermionic 
generators r, T. So (3.23) does not contradict the Maurer-Cartan equations on XR 
(3.10). 

The resulting set of equations for the coset parameters is most readable when 
written in terms of complex superfields X, X: 

X = Y exp(tiqo) X = Y exp( -$q) (3.24) 

+ x = x ( t L ,  e ) , X = X ( t R ,  e) I DX=O 
Dx=o (3.25a) 

a a - -  
- DX=O - DX=O (3.25b) 
a t  a t  

~ ~ ( X X - ~ X ) - D X D X = ~ ~ .  (3.25 c) 

Equations (3.25) are invariant under N = 2 superconformal transformations acting on 
X, X as 

The remaining coset parameters z, 6 are expressed through U = I n X + I n X  by 
formulae (3.13). 

Thus, in the case at hand the covariant reduction leaves us with the complex chiral 
coset superfields X, X subject to the free equations (3.256) and to the additional 
constraint (3 .25~) .  It should be emphasised that a chiral d = 1, N = 2 superfield carries 
out, off shell, a different supermultiplet as compared to the real superfield Y considered 
before. Though both superfields contain the same number of bosonic and fermionic 
degrees of freedom, they differ regarding the treatment of bosonic components. In the 
real case, one of the bosonic fields ( F )  is auxiliary while both bosonic fields of X are 
physical (Xle=o= p (  t )  exp($iqo( t ) ) ) .  Nevertheless, we will see that the superfield 
equations (3.25) and (3.14) yield, on shell, the same equations for the fields p, +, $. 
In the real case this occurs upon elimination of the auxiliary field F by its algebraic 
equation of motion, whereas in the complex case the same result follows upon 
elimination of +, i.e. after a partial integration of (3.25b). 

We begin with explaining the meaning of constraint (3 .25~) .  The quantities ( X X  - 
XJ?) and DXDX entering into (3 .25~)  are constants by the equations of motion (3.25b). 
So ( 3 . 2 5 ~ )  serves to identify d specific combination of these dynamical constants with 
the ‘kinematical’ constant m. Keeping this in mind, let us note that the chirality 
conditions ( 3 . 2 5 ~ )  imply 

DX = ~ D Y  exp( -fiqo) DX = 2 D Y  exp(fiqo) (3.26a) 

[ D, D] Y = - Ye - 2 Y-’BYDY. (3.26b) 

sx = $i(DDE)X SX = +i( DDE)X. 
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In virtue of ( 3 . 2 5 ~ )  one has 

Y 4 + 2 Y - ' d Y D Y =  -2mY-' 

Upon substitution of this relation into (3.26b), (3.14) is regained. Thus (3.14) and 
(3.25) eventually give rise to the same set of component equations. 

We wish to mention that the correspondence between the real superfield formulation 
of N = 2  SCM and the free theory of chiral d = 1, N = 2  superfield has a prototype in 
the bosonic case. In appendix 1 we show that the bosonic CM equation (2.2) can be 
regarded as describing classical configurations of a free complex d = 1 field at a fixed 
value of the conserved external angular momentum, viz the U(1) charge [14]. In the 
supersymmetry case this U ( l )  is just that generated by T and the expression in the 
LHS of ( 3 . 2 5 ~ )  is the relevant conserved charge. 

4. N = 4  SCM: formulation via real superfield 

As before, we begin with the structure relations of d = 1, N = 4 superconformal algebra 
s u ( l , 1 ( 2 )  [ I l l? .  It is a straightforward extension of N = 2  superalgebra (3.1). The 
basic difference consists in that the internal symmetry group U( 1) of the N = 2 case 
is enlarged to SU(2) and the fermionic generators form complex SU(2) doublets G-,,*,, 
GF1/2, G1/2a, G?/2: 

{G,,, Gqb} = -2SabL,+, +2(  r - q)(T ' ) ,bT '  [ T' ,  T'] = c"Tk 

i [ L ,  G m l = ( f n - r ) G n + r a  i[L,, e ,"]  = ( f n  - r ) G z + ,  (4.1) 

i[ T' ,  G,,] = -f( ?'),bGrb 

( a ,  b = 1,2; i,j, k = 1,2,3) .  

i[T', G,"] =$G,"(T')b '  

The generators L, constitute the algebra so( l ,2) ;  all the other commutators and 
anticommutators are equal to zero. 

Superalgebra (4.1) displays interesting peculiarities. First, among superalgebras 
s u ( l , l ( N / 2 )  only s u ( l , l / 2 )  possesses SU(2) as the internal symmetry [ll].  All the 
other members of this family necessarily involve U(N/2)  as the internal symmetry 
group, with the U( 1) factor having a non-trivial action on spinor generators. One may 
still modify the RHS of {G, G} in (4.1) by adding a U ( l )  generator T :  

{ G,,, Gqb} + {G,,, Gqb} - 2i( r - q)6,'T. (4.2) 

However, consistency with the Jacobi identities requires T to commute with all the 
SU( 1,112) generators, including the spinor ones. So, T is to be regarded as a central 
charge generator. We will see that, in the real superfield formulation of N = 4  SCM, 

this generator does not manifest itself and can be consistently put equal to zero. It 
becomes active upon passing to the dual formulation of N = 4 SCM (§ 5 ) .  

One more peculiarity of superalgebra (4.1) is the presence of an outer automorphism 
group SU,(2). Its generators V'  = - V'+ act only on spinor generators 

(4.3) 

t This is the minimal N = 4, d = 1 superconformal algebra. It can be extended to osp(2 14). However the 
latter case requires a more careful analysis (see 5 7) .  
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This freedom will be used in constructing superfield formulations of N = 4 SCM. Note 
that the central charge-modified superalgebra su( 1, 112) possesses automorphisms only 
with respect to the third generator of SU,(2) (4.3): 

[ V3, G,,] = iiG,, [ v", G: 1 = - $6:. (4.4) 
After these preliminary remarks let us turn to our task, almost all procedures being 

as in the N = 2 case. We follow the principles listed in the beginning of § 3 and 
consider a non-linear realisation of SU(1,112) in the coset SU(1,112)/SU(2) with the 
elements parametrised as? 

G( r, 8, g, 6, E z, U )  = e x p ( i t L , )  

x exp( BG-,,2+ eG-l/2) exp(izl ,)  exp([G,,,+ exp(iuLo). (4.4) 

Here { r, O a ,  ea = (e")'} are coordinates of d = 1, N = 4 superspace and the rest of the 
coset parameters are N = 4 superfields unconstrained for the moment. The superconfor- 
mal transformations induced for the coordinates { t ,  8, e} and the superfield u ( t ,  8, e) 
by the left SU( 1,112) shifts look very similar to those of the N = 2 case: 

St  = E (  t, 6, e) -4eaDaE +fGaDaE ( 4 . 6 ~ )  

60" = $D"E SO, = -fiDaE (4.6b) 

s u  = E ( 4 . 6 ~ )  

- 

D, = 3 / 3 0 ,  +iea3/3t 

{D,, ob} = -2iSab d l d t  

Da = +laga -ie"a/at 
(4.7) 

E(r, e, 17) = f ( t ) - 2 i ( ~ ( t ) 8 - e d ( t ) ) + f ( e ~ ~ ~ ) b ~ + 2 ( ~ e + e ~ ) o e + ~ ( e e ) ' j '  

E a ( t ) = E a + p a t .  
(4.8a) 

Heref( t ) ,  as before, collects the SO( 1,2) parameters, E ,  and p a  correspond to PoincarC 
and conformal supersymmetries and bk to internal SU( 2) transformations. Note the 
useful identities 

D ~ E  = D i 2 ~  = 0 [D,, Da]E = O .  (4.8b) 

Further steps are to construct the Cartan 1-forms and to perform the covariant 
reduction to the graded subalgebra, properly extending the SO(2) generator Ro (2.7). 
The computations are tedious, though straightforward. Therefore we dwell merely on 
several basic points. 

The reduction subalgebra in the case in question is su( 1 12) spanned by the generators 

RO T' ra = G-, ,2a +imGllza fa = GUl/z - imGrI2 (4.9) 
{ra, fb}  = - 2 6 , b ~ 0 + 4 i m ( 2 ) , b ~ k  {r, r} = 0. (4.10) 

The remaining (anti)commutators are similar to those present in (3.9). The generators 
F a ,  f b  are defined up to SU,(2) rotations and, in general, are parametrised by elements 
of the coset SUA(2)/UA( 1) 

f a  = exp(a kvk)r, exp(-a vk) 
T" =exp(akVk)Ta e x p ( - a k v k )  
I k = 1 , 2  (4.11) 

+ The SU(2) indices are raised and lowered with the help of invariant skew-symmetric tensors E , ~ ,  e''. 
When summing over these indices, the first index is always meant to stay in a natural position, e.g. O2 = O"O,, 
elf= ea&,  e2 = go@, etc. 
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(a rotation with V3 merely attaches unessential phase factors to Fa, r b  and is thus an 
automorphism of (4.10)). 

We perfor% the reduction to the superalgebra su(l12) with the SUA(2)-rotated 
generators F a ,  Fh. According to the general strategy, we equate to zero all the Cartan 
forms, except those taking values in this subalgebra. By this procedure, the superfield 
coset parameters z (  t, 8, e), ["( t, 0, e) are expressed via U( t, 8, e) and there also emerge 
differential equations for U( t, 8, g). Expressions for z and [" are similar to their N = 2 
prototypes (3.13) so we confine ourselves to presenting the equations for u(t, 8, e): 

(0)' e' = 4mf 

( D ) 2  e' = 4mf 
( 4 . 1 2 ~ )  

[D,  D] e' = 8mc (4.12b) 

[D(a,  D b ) l U  = o  ( 4 . 1 2 ~ )  

where constants c, f are related to the SUA(2) rotation (4.11): 

exp[i(a 'T1+a272)] = c 2 +  f f =  1. (4.13) 

The set of equations (4.12) gives the sought superfield description of N = 4 SCM. 

The meaning of different equations in (4.12) is as follows. 
( i )  Constraints ( 4 . 1 2 ~ )  are kinematic off-shell irreducibility conditions. In contrast 

to the N = 2 dilaton superfield u ( t ,  8, e), its N = 4 counterpart involves, from the 
beginning, two irreducible off-shell representations of d = 1, N = 4 supersymmetry. 
Conditions ( 4 . 1 2 ~ )  are reminiscent of the d = 4, N = 1 tensor multiplet constraints 
[15] (and, in fact, at f =  0 follow from the latter by dimensional reduction d =4,  
N = 1 + d = 1, N = 4). They single out from U( t, 8, e) a 'tensor' d = 1, N = 4 super- 
multiplet. The irreducible field content of u ( t ,  8, e) implied by ( 4 . 1 2 ~ )  is convenient 
to define as 

e''2/o,o= p ( t )  $bU/o=O = i q b (  t ) p - '  $PuJO=,,= - iW(t)p- '  

[D", f ib ' ]  eUlO=o=A(ab)( t )  

All the higher-dimensional components are expressed as time derivatives of the 
irreducible ones. 

(4.14) 
[D", D"] e U / e = o =  C ( t ) .  

( i i )  An important consequence of ( 4 . 1 2 ~ )  is the differential constraint 

(4.15) 
a 
- (CO, d]) eu = O+[D, 01 eu(O,o = C =constant 
a t  

which is a d = 1 prototype of the transversality condition a@A, = 0 typical for tensor 
multiplets in d = 4  [15]. Thus the role of equation (4.126) is to fix a constant in (4.15) 
in terms of original parameters m and c figuring in the definition of the covariant 
reduction subalgebra. 

(iii) Equation ( 4 . 1 2 ~ )  is dynamical. It serves to eliminate the auxiliary field A'"b'( t )  
and gives rise to equations of motion for the physical fields p ( t ) ,  V"(t), q',(t). 

Instead of writing down the component equations we give the invariant superfield 
action and its component form. 
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Taking into account the transformation law of U (4.6c), identities (4.86) and the 

(4.16) 

transformation property of d = 1 ,  N = 4 superspace integration measure? 

6(dt  d28 d28) = - k ( d t  d28 d28) 

the invariant action is unambiguously restored to be 

s=-' *A -2 d t  d48(u e") (4.17) 

which is easily recognised as a d = 1 prototype of the d = 4, N = 1 improved tensor 
multiplet action. The presence of constant f in constraints (4.12a) reveals itself only 
after passing to components$ 

S='A-2 dt{(b)2 - [ m2+ 2 m c q F +  m f q q  + mf*F +4(@9)*]p-'  

- iqi;.zk + il@;.Yr - 4 q b p a A (  p - 2  - - :2A(ha)A(ba)P-2}. (4.18) 

One may check by inspection that the component field equations following from (4.18) 
coincide with those implied by the superfield equation ( 4 . 1 2 ~ ) .  

In terms of physical components, the action is 

S = ;A-' dt{(b)' - [ m2 + 2 m c q F  + m f q q  + mf*F + ( 9 F ) 2 ] p - 2  - iq@ + i@F}. 

(4.19) 

For completeness, we present the supersymmetry transformations of p (  t )  and qa 
leaving this action invariant: 

i 

6 p ( t )  = -i(,uF-Qp) SQ" =(ma)+ 
1 i 1 

P P P 
~ u , ( t )  = - ( p ~ +  q p ) q a  + Gap - pap +- p a ( W  + mc) +- mfpa. (4.20) 

We close this section with several comments. 
First, the final component action (4.19) does not coincide with the one corresponding 

to the N = 4 SCM model proposed previously [3]. It involves only one physical boson 
p (  t )  and therefore can be regarded as a genuine extension of the CM and N = 2 SCM 

actions (2.1) and (3.17). In the next section we will see that the standard version of 
N = 4 SCM with two bosonic physical fields [3] emerges upon performing the duality 
transformation on the above action. This version is related to the one given here, much 
like a complex version of N = 2 SCM is related to its real formulation (see § 3). 

Second, the version of N = 4 SCM we are considering actually displays no depen- 
dence on the choice of SU,(2) constants c, J: Indeed, it is always possible to pass to 
c = 1 ,  f = J =  0 by a proper SUA(2) redefinition of ea ,  & in (4.12) and, respectively, 
of Fa, 9, in action (4.19). Then the expression within square brackets in (4.19) is 
reduced to 

[ m + (W)12. (4.21) 

t We use the convention dr d48 = dr&DZD2. 
$ Note that, in the d = 4 case, the insertion of constants f, f into the R H S  of the improved tensor multiplet 
constraints is forbidden by superconformal invariance. 
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However, these SU,(2) constants appear to be essential while going over to the dual 
formulation. We will see that, to any given set of e, f; there corresponds a dual 
formulation which is different off shell from the others. Note that at any choice of f; 
?and c = (1 -ff)1'2 the set of equations (4.12) and the action (4.19) enjoy an additional 
invariance under the U ( l )  subgroup of SU,(2) acting on . \Zl"(t) ,  9,(c) as 

8 9 "  = ia 9" -- 9, 89, = -ia( 9, (4.22) ( -  : ) 
In the representation (4.21) this subgroup coincides with the one generated by V3.  

covariant formulation of N = 4 SCM. 

Finally, to clarify the previous remark, we present a manifestly SU,(2) x SU(2) 

Let us pass to the SUA(2)-covariant notation: 
- 

eau = (ea ,  E a ' & )  ( e a a ) =  E,bB,pebp =(&, -e,) 
D,, f (D,, D,) = a/aeaa +io,, a l a r  
q a m  E ( v a ,  + a )  (E) = & a b & a P 9 b p  = (qa, -9,) 

= - F " ~ E ~ " J ( ~ ~ )  p=-& a P  E P u  A ( P ' )  A'"P' A,,,, = -2. 

Then (4.12) and (4.19) can be rewritten as 

(4.12') 

(4.19') 

Looking at these formulae it becomes evident that one may always pass to A ( m p ) =  
(0 ,  1,O) by a proper rotation in the suA(2)  indices CY, p. Besides, for arbitrary A'") 
there is an invariance under SO(2) rotations in the plane orthogonal to A'"P ' .  They 
are just given by (4.22). 

1 
4 

S = $ *  1 dt[  (~)'+-i'@""Yr,, - 

5. Duality transformation and complex form of N = 4  SCM 

The superfield action (4.17) exhibits a manifest supersymmetry and gives rise to a 
reasonable component action. However, one cannot directly vary it with respect to 
the superfield U to obtain the equation of motion ( 4 . 1 2 ~ )  because U is subjected off 
shell to the constraint ( 4 . 1 2 ~ ) .  A way out is to solve ( 4 . 1 2 ~ )  via an appropriate 
unconstrained prepotential. Another option we prefer to follow here is to implement 
( 4 . 1 2 ~ )  in the action with the help of a Lagrange multiplier superfield @ ( t ,  8, e): 

s= -1. 2A -2 J d t  d48[e"u -@D2(e" - mfe') -GD2(e" - m~%*)]. (5.1) 

Varying @, 6, we come back to (4.17) and ( 4 . 1 2 ~ ) .  On the other hand, U is uncon- 
strained in the action (5.1) and one may vary it before varying a. As a result, one 
gets for U the algebraic equation 

U = D2@ -I- D 2 6  - 1. (5.2) 
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Introducing the d = 1 ,  N = 4 chiral superfields: 

D25 = V b"v=o+v=  v(tLe) 
D 2 @ =  v DaQ=O*V= v ( f R 8 )  

t L =  t + i e e  f R  = ( f L ) +  = t - io8 

a t L =  E + 8DE 6tR=E-6DE 

(5.3)  

(5.4) 

and substituting (5.2) back into the action (5 .1 ) ,  we arrive at a dual representation of 
the N = 4 SCM action?: 

S = j h ' ( l  d t d 4 e Y F - m f  dtLd201n Y-mf d t R d * e h  y I I 

Taking account of superconformal invariance of the d = 1, N = 4 chiral superspace 
integration measures 6(dtL d28) = 6(dfR d2e)  = 0, the action (5 .5)  can be checked to 
be invariant under 

s y = E L ( t , ,  e ) Y  6v=kR(tR,  8)F 
(5 .7)  

EL = ff( tL) + 2 i ~ " ~ , (  tL)  E R  = ( E L ) +  E = E L +  ER. 

The superfield equations of motion following from (5 .5 )  are 

D* Y = 4mf( F)-' 6'F = 4mf( Y)-'. (5 .8)  

or, being rewritten via physical fields, 

S = 1 A - 2  I dt (  Y n F n + i i x j  -$xi - m 2 f f (  YoFo)-' 

(5.9b) 

We have defined the component fields as 

yo= ~ l , = ~ = p ( t )  exp(i(o(t)) f a  = ib"YI,=, xa = -iD,YI,=o 
(5.10) - 1 - 2 -  F = $D2 Y(,=, F=qD Y/,=O. 

The physical component action (5.9b) is invariant under the following supersymmetry 
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transformations: 

1 
21 

Sp(r)=y(Ea,ya - 2 ; " ~ ~  eiV) 

1 
a y (  t )  = - - ( 

a j  0 ( t = 2 6 a F, - 2 E a  Po + 2i g a m f ~ ;  

( t ) = 2 fa yo - 2 ga Yo + 2i samf Yo'. 
The equivalence of this version of N = 4  SCM 

appendix 2 .  

e+ + j a g a  eiP)  
2P (5.11) 

to that given in [3] is proved in 

Let us explain at greater length in what sense the described formulation of N = 4 
SCM is equivalent to the real one given in 0 3 .  

First of all, the original equations (4.12) for the superfield U are satisfied with 
substitution of e' = YF However, their status is essentially different. Equation (4.12c), 
which was dynamical in the real superfield formulation, is now obeyed off shell as a 
consequence of the chirality conditions (5 .3) .  On the contrary, constraints ( 4 . 1 2 ~ )  
become on-shell equations in the dual formulation. Actually, these are satisfied in 
virtue of the equations of motion (5 .8) .  The same concerns the constraint (4.15) 
following from ( 4 . 1 2 ~ ) .  One has 

C(r,e, e)=[D,D]eu=-2DaY~"~-4i(YF-YF) ( 5 . 1 2 ~ )  

C( r )  = 8p2+ +2(jaXa) (5.126) 

and 

C( t )  = O+ C( t )  = constant (5 .13)  

as a consequence of the equations of motion for fields y ( r )  and Xa(r), , f a ( ? ) .  Thus, 
in the dual formulation the field C ( t )  is expressed via the derivative of the physical 
field y ( t )  and it is a constant only dynamically, by virtue of the equations of motion. 
Upon eliminating + ( t )  by (5.13) and identifying the constant in this equation with 
8 m ( l  -ff)1'2 one gets for p ( t )  and 9 a ( t ) = $ e " x a ( t ) ,  qa(t) =4e- i (p ja ( t )  precisely the 
same equations as those following from action (4.19). So, the N = 4 SCM equations 
in a real formulation can be regarded as an invariant subset of the complex N = 4 SCM 

equations which is singled out by specialising to a fixed value of the conserved quantity 
C ( t )  (5.126). 

One sees that these two formulations of N = 4 SCM are related to each other as 
N = 2 SCM is related to the theory of chiral N = 2 superfield (§ 3 )  and the ordinary 
bosonic CM to the theory of complex d = 1 field (appendix 1). To understand the 
meaning of the conserved quantity C ( t ) ,  let us inspect in more detail the invariance 
properties of' actions (5 .5)  and (5.9). The off-shell U A ( l )  invariance (4.22) of the real 
N = 4 SCM action is not respected in general by (5.5) and (5.9) (though it is restored 
on shell at any given fixed value of C( t ) ) .  Instead, these actions respect a new Abelian 
off-shell symmetry: 

y' = elo y = e-la F. (5.14) 

This new invariance is of the same nature as, e.g., the one associated with the duality 
transformations in d = 4 SUSY [ 151. An interesting peculiarity of the d = 1 case is that 
this symmetry proves to be naturally incorporated into the underlying superconformal 
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symmetry. It emerges in the Lie bracket of PoincarC and conformal supersymmetry 
transformations of fields c p ( t )  and xa, 2". As follows from (5.11): 

(5.15) 

Comparing it with formula (4.2), we conclude that in the complex formulation of 
N = 4 SCM the N = 4 superconformal algebra is necessarily modified by an operator 
central charge T possessing a non-trivial action on the physical fields. The quantity 
C (  t )  in (5.12) is just proportional to the conserved 'current'generating this T symmetry. 
The fields p (  t ) ,  9" = 4 e-"Xa, q" entering into the equations of the real formulation 
of N = 4 SCM are inert under T. This explains why the central charge does not manifest 
itself in the real formulation. 

One more curious feature of the d = 1 duality transformation is related to an SU,(2) 
freedom in the definition of constants c,f: Instead of starting with (4.12a), one might 
choose as the basic constraint some suA(2)/u(1)  mixture of ( 4 . 1 2 ~ )  and (4.12b): 

156 e' = 4m7 66 eu = 4mf 

(5.16) 

f = cos2(a)f-sin2(a) e-2 '~f-s in(2a)  e-'Yc. 
Inserting (5.16) into action (4.17) one arrives at a different dual _action, where f stands 
for f and the notion of chirality is defined with respect to 2, e",: 

u ( t , e , i i ) =  v(TLi)+v(tRe)-i. (5.17) 
Thus there exists a whole suA(2)/uA(1) orbit of dual formulations of the same real 
N = 4 SCM (4.12). All those are non-equivalent off shell and correspond to different 
patterns of the U( 1) central charge modification of N = 4 superconformal algebra (4.1). 
For instance, the choice (5.16) amounts to (we ignore the SU(2) indices) 

- * =  

{G, G } + { G ,  G}-2i(r-q)cos(2a)T 

{G, G}+{G, G}-2i(r-q) sin(2a) e ' T  
(5.18) 

Note that the option f = 7 = 0, E = 1 gives rise to the dual formulation in terms of a 
free chiral N = 4 superfield. 

We wish to mention that the superfield equations of N = 4 SCM in dual formulation, 
including the chirality conditions, can be unambiguously deduced by applying the 
covariant reduction procedure to the central-charge-modified N = 4 superconformal 
algebra. The consideration goes along the same lines as in the N = 2 case ( 0  3) .  One 
should put the central charge generator into the coset and perform the covariant 
reduction to subalgebra (4.9) enlarged by this generator. 

6. Superfield form of general solution 

As has already been mentioned, the covariant reduction techniques provide us with a 
geometric way of getting general solutions of field equations of CM and SCM. The 
procedure of integrating these equations is reduced to purely algebraic manipulations 
which are based mainly on the structure relations of relevant d = 1 superconformal 
algebras. 
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The strategy we will keep to is a straightforward generalisation of the one employed 

We begin once again with the simple case of N = 2  SCM. The basic covariant 

(6.1) 
where the subalgebra XR= {Ro,  r, T, T } c  su(1, l I  1) is defined in (3.10). The most 
general solution of (6.1) can be written as (cf (2.9b)) 

in the bosonic C M  [XI, so we will not enter into details of presentation. 

reduction constraint is (see (3.12)) 

GRI dGp,=inR€ XR={r ,  T, Ro, T }  

GR=GO(c l ,  c2 ,p ,p )  exp(irRO)exp(7r+ijT)exp(hT) (6.2) 
where c1, c 2 ,  p, fi  are constants, respectively bosonic and fermionic, and T,  7, i j ,  h 
are superfunctions given on the d = 1, N = 2 superspace { t, 8, e}. 

The meaning of different factors in (6.2) is as follows. The element Go belongs to 
the coset SU(1, 11 l ) /HR. It can be parametrised, without loss of generality, as 

& c l ,  c2, p, = exp(ic,L-,) e x ~ ( p G - , , ~ + i i ~ - ~ / ~ )  exp(ic2L0) (6.3) 

(any other parametrisation is related to (6.3) by a redefinition of parameters T,  7, 7j,  h ) .  
The factors to the right of eo represent the coset HR/U(l). The parameters r ( t ,  8, e), 
v( t ,  8, e), i j  can be regarded as coordinates of a (1 12)-dimensional geodesic hypersur- 
face which is embedded into the group space of S U ( 1 , l l l )  and extends the one- 
dimensional geodesic subspace (the geodesic curve) of the bosonic case. The position 
of this hypersurface within the SU( 1, 1 1 1) manifold is specified by constants c,, c 2 ,  p, ii. 

Since the N = 2 SCM equation of motion (3.14) is a consequence of (6.1), the general 
solution of the latter immediately yields the general solution of (3.14). Comparing 
(6.2) with the original SU(1, 1 I l ) / U ( l )  coset element (3.2), one finds 

1 i 
m cos mT t = c1 + exp( c2 )  - tan m r  - - (Pi j  - 7 P )  exp(tc2) 

8 = p + exp(&c,) - 7 

(6.4) 
1 1 -  e= ii + exp(+c,) - 7 cos m r  cos mr  

U = c2 - 2 ln(cos mr)  + 27777111 (6.5) 
( h  is also unambiguously fixed). After expressing T and 7, i j  in terms of { t ,  8, e}, one 
eventually gets the general solution for u(t, 8, e) in the form 

exp(u) = aa+( 1 -i: rL)( 1 + i  $ iR) 

iL= t+ i0J - -2 i0p  f R  = ( t L ) +  

b ( a +  a') - 2 b 2 p p  =2m 

a =exp(bc,)+im(c, - i p p )  exp(-$c,) b = m exp( -bc2). 

The fact that e" is factorised into a product of chiral and antichiral d = 1, N = 2 
superfunctions reflects the correspondence between the equations of N = 2 SCM and 
those describing a chiral d = 1, N = 2 superfield (see discussion in 0 3). 

Let us briefly discuss the transformation properties of solution (6.6) under the 
N = 2 superconformal group (3.3) and (3.4). It is easy to check that the infinitesimal 
transformations of U at fixed t, 8, e: 

6"u = E -Eli -biD.EDu -$iDEL% 



Geometric superJeld approach 4217 

are reduced to appropriate variations of the integration constants in (6.6). For instance, 
under supersymmetry 

Sa = i(pP+ @@)a + 2pEb 

Sp = E + i ( a / b  -pp)P. 
S b = i ( P p - p D ) b  

It is a simple exercise to indicate the SU( 1,111) generators leaving the above solution 
invaraint: 

Like in the bosonic case [SI, the geometric interpretation of this invariance is that 
generators (6.8) produce the motions along the directions belonging to the hypersurface 
(7, 7, i j } ,  without affecting the constants c1, c2, p, and, hence, preserve the shape 
of the hypersurface and its orientation in the SU( 1,111) group space. Any other 
SU(1, 111) transformations change the above constants. One may say that S U ( 1 , l I l )  
is spontaneously broken on solution (6.6) down to subgroup fIR generated by (6.8). 

The N = 4 case can be treated quite analogously. It is convenient from the beginning 
to fix the SUA(2) freedom so as to have f = y =  0, c = 1. Then the covariant reduction 
constraint is 

GR' d G R = i f l R E  XR={Ro,  ra, F a ,  Ti} (6.9) 

and its general solution is given by - 
G ~ = G o ( c i ,  ~ 2 ,  pa,  P a ) g ( T ,  7'9 f a )  (6.10) 

where eo and g represent, respectively, the cosets SU(1, 1 12)/HR and HR/SU(2). The 
explicit form of these elements is an immediate extension of (6.2) and (6.3), so we do 
not present it here. The general solution looks much like (6.6): 

e x p ( u ( t , 0 , 8 ) ) = a a +  1 - i - t ,  l + i T t R  ( a " - > (  a b * )  (6.11) 

i,= t+i08--2i0p iR = ( t,)+ 

b ( a  + a') - 2 b 2 p p  = 2m 

a =exp(tc2)+im(c,- ipp)  exp(-$c,) 
(6.12) 

The stability subgroup of solution (6.11) is A, related to HR by means of the 
SU(1,1 I ~ ) / H ,  rotation with Go(c, ,  c2, p, p ) .  

b = m exp( --;c2). 

7. Towards higher N 

We have shown that the N = 2 and N = 4 SCM equations can be algorithmically deduced 
starting solely from the structure relations of d = 1 superconformal algebras su( 1 , l  I 1) 
and su(1, 112). One may wonder what happens while treating, along the same lines, 
the superalgebras incorporating higher- N d = 1 supersymmetries. Here we apply our 
techniques to superalgebras su( 1, 1 1 N/2) with arbitrary even N. The arising systems 
directly generalise the real N = 4 SCM considered in D 4 and can thus be regarded as 
higher-N SCM models. 



4218 E Ivanov, S Krivonos and V Eeviant 

The (anti)commutation relations of su( 1, 1 I N / 2 )  are [ l l ]  

i [ L ,  L m l = ( n - m ) L + m  
i [ L ,  Gra1= ( i n  - r)  Gr+, a 

[Ti, Gral=f(A')abGrb [ T i ,  G,"] = -$G,b(A')," (7.1) 
[ T  G r a I = f G r a  

n, m = -1,0,1; r, q = -1 2, i 

i[L,, G,"] = ( f n  - r)G:+,, 

[ T, d,"] = -iG," 

{Gra, Gqb}= -2SabLr+,+2(r-q)i N 

where are generators of the fundamental representation of SU( N/2):  

( A ' ) a b ( A i ) , d  =2SadS,h -(4/N)aabS,d. 

We see that superalgebra (7.1) at any N, except N = 4 ,  necessarily contains a U ( l )  
generator T having a non-trivial action on spinor generators. 

As before, we realise SU(1, 1 I N / 2 )  by the left shifts in the coset 
SU( 1, 1 1 N/2)/SU( N / 2 )  x U( 1) and identify the coset parameters corresponding to 
the d = 1 PoincarC supersymmetry generators L-, ,  G-1/2a, with the d = 1, N 
superspace coordinates {t ,  O a ,  ea}. We choose su(l1 N / 2 )  = {&, G-,I2, +imG,,,,, 
dE,/2 - imGfI2, T, T ' }  as the covariant reduction subalgebra. Without entering into 
details of computation, let us write down the final equations for the basic superfield 

DaDb e" = 0 D a d '  e" = 0 ( 7 . 2 ~ )  

[ Da,  D b ]  e' -2 e-"Da eUDb e" + e-"D, e"Dc euSab = 4mSab (7.26) 

Da = 3/80" + iea3/3t 

u ( t ,  0, e): 

Da = -a/aiia - ioaa/at .  

These equations are an obvious generalisation of (4.12) and reduce to the f=f= 0 
version of the latter at N = 4. Note that non-zero constants f, f are not allowed at 
N > 4 since a non-trivial external automorphism group exists only in the special case 
of N = 4. The set (7.2) is invariant under superconformal transformations which have 
the same form as in (3.3) and (4.6): 

S t  = E ( t ,  0, e) -iDaEga -fOaDaE 
S o a  = i i D a E  SO, = -j iDaE 

- (7.3) s e' = E e" 

E ( t, 0, e) = f ( t ) - 2i( E ( t ) e - OE( t ) )  + 2( &e+ 06) O e +  i( e@'!+ b'( OA 'e)  - aOe 
with f( t )  = a + bt + ct2,  E (  t )  = E + Pt, b', a being infinitesimal parameters of 
SU( 1,1 I N/2) .  

An essential difference from the N = 4 case consists in that constraints ( 7 . 2 ~ )  not 
only reduce the off-shell component content of U( r, 0, e) but also partly put the system 
on shell. One may check that, for any even N, the 0 decomposition of the superfield 
e' subject to ( 7 . 2 ~ )  is as follows: 

e' = p ( p  + 2i 09 + 2i e?) + ~ ~ & ~ c ~ ~  + 2[ 0 ( p + )  + ( b ~ )  e] ~ e +  t (  (7.4) 

( i a b ) = O  (7.5a) 

However, for N > 4, ( 7 . 2 ~ )  imply in addition the differential constraints 

(7.56) 

(7.5c) 
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(recall that, in the N = 4 case, an analogous constraint appeared only for the singlet 
piece of cab (4.15)). Fortunately, these constraints prove to be a consequence of the 
dynamical equations embodied in (7.26): 

cab + 8 q b q a  - 4aab@P = 4m8,' 

(7.6) 

G ( t ) = p - 3 ( m + W ) 2 .  

The equations for physical fields p, qa, T, follow from the action which is a 
straightforward extension of the component N = 4 action (4.9): 

(7.7) S=L,'h-2 dt[(p)2-p-2(m+@?P)2+i@P-i@k] 

and is invariant under the following supersymmetry transformations: 

~p = - i (& ' ( r )q ,  -PE,(~))  
S q l "  = - i p - l [ ~ ( t ) \ I r + ~ \ j i T E ( t ) ] ~ o + $ a p - ~ a p - i p - l ~ a ( ~ ~ + m )  (7.8) 

8 q a  = i p - ' [ & ( t ) ~ + Q ~ ( t ) ] * ,  + d,p - + i p - ' e , ( W +  m )  
which close on shell. Of course, it remains to learn how to divide (7.2) into the 
kinematical constraints and dynamical equations and how to extend the action (7.7) 
off shell. It would be of interest also to check whether the system (7.7) is contained 
in the class of d = 1 models with N extended supersymmetry proposed in [16]. 

Finally, we would like to mention that the lower-N d = 1 superconformal algebras 
might be extended to higher N via superalgebras osp(21 N )  with the bosonic part 
~ 0 ( 1 , 2 ) 0 s o ( N )  where N may be both even and odd (recall the isomorphism 
su( 1 , 1  I 1 )  - osp(2 12)). However, we have checked that these superalgebras, beginning 
with N = 3, contain no graded subalgebras which would include the generator Ro in 
parallel with the SO( N )  generators. Therefore, within this framework, it appears 
impossible to achieve non-trivial d = 1 systems with linearly realised SO( N )  symmetry. 
The options when only a subgroup of SO( N )  corresponds to linear symmetries require 
a special analysis. 

8. Concluding remarks 

The main goal of this somewhat lengthy paper was to demonstrate the efficiency of 
the covariant reduction method for constructing d = 1 superconformal models and 
analysing their invariance properties. We have presented a common geometric view 
on these models, given manifestly invariant superfield formulations of N = 4 SCM, and 
deduced a new series of SCM models for arbitrary N. It remains to establish a link 
with models of current interest, such as superstrings, supermembranes, etc. In this 
connection, we would like to notice that the considered systems are similar, in some 
aspects, to the spinning superparticle models [ 171. Indeed, their basic objects are d = 1 
superfields taking values in graded manifolds, i.e. supermanifolds. A difference is that, 
in the case at hand, the world-line and target superspaces are unified within a single 
graded manifold, the quotient S U ( 1 , l  I N / 2 ) / U ( N / 2 ) .  This analogy suggests that the 
models in question can likely be reproduced as fixed gauges of appropriate spinning 
superparticle models. 
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One more remark concerns an analogy with the d = 2 super-Liouville models [9]. 
The superfield equations of the latter are integrable in the sense that they amount to 
zero-curvature representations on certain superalgebras. Our consideration shows that 
the superfield SCM equations do equally admit a similar interpretation. 

Indeed, let us apply once again to the N = 2  case. The basic constraint (3.12) 
leading to (3.14) can be equivalently replaced by the condition that the curvature of 
the XR-valued 1-superform R R  vanishes: 

dlaR(d2) -d2aR(dl)+i[0R(dl), aR(d2)l = o  (8.1) 

where the superfield Y(t ,  6, 8) in OR is not subjected to (3.14) before imposing (8.1) 
( 6  and z are assumed to be expressed via Y by (3.13)). Decomposing aR in differentials 
de, de, Ar and introducing the lengthened covariant derivatives 

a R = d 6 a o - d d f i o + R , A t  
(8.2) 

Vf, = D + i R ,  

one rewrites (8.1) as the set of equations 

0, = D+iil, 0 , = 8 ,  + io, 

P o ,  V o I  = P o ,  V o I  = 0 ( 8 . 3 ~ )  

{ v ~ ,  O,} = - 2 i ~ ,  (8.3b) 

[To, V , l  = 0. ( 8 . 3 ~ )  

Note that ( 8 . 3 ~ )  follows from (8.3a, b)  by Bianchi identities. 

(8.3 a, 6).  
So the N = 2 SCM equation (3.14) is equivalent to the integrability conditions 

The equations of higher-N SCM can be given an analogous interpretation. 
Finally, an urgent problem for a future study is to carry out the quantisation of 

superfield SCM models and to find out how their remarkable geometric properties 
reveal themselves in the quantum region. Note that the component N = 4 SCM was 
quantised in [3] by using its complex version. It would be of interest to see whether 
the dual equivalence of complex and real formulations of N = 4  SCM survives 
quantisation. 
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Appendix 1. Conformal mechanics and complex d = 1 field theory 

Let us show that the CM equation (2.1) can be viewed as a result of partial solving of 
the free equations for a d = 1 complex field. This is a particular case of the phenomenon 
indicated in [14]. 

We start with the action 
r r 

S = d t  ii = :A-2 dt[(P)’+ p 2 ( 4 ) ’ ]  J J (Al . l )  
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where z =exp(icp(t))p(t). The equations of motion are 

b( t )  = P ( d 2  ( A 1 . 2 ~ )  

( p ’ + )  = O J ~ ’ +  = constant = m. (A1.2b) 

Equation (A1.26) is the conservation law for the Noether charge p2+ (external ‘angular 
momentum’) corresponding to U( 1) transformations z’ = e’”z. Choosing a definite value 
of m for p’+ and expressing + by (A1.2b) one gets for p( t )  just equation (2.2). Thus 
one concludes that (2.2) describes classical configurations of the free complex d = 1 
field z ( t )  at a fixed external angular momentum. Note that one might add to (A1.2) 
an U( 1)-invariant potential term: 

( A l . l ) +  (Al . l )  - $ A p 2  dt(z2)-’a2. (A1.3) 

For p ( t )  one would again get (2.2) but with m 2  shifted by a constant a 2 .  So (2.2) can 
equally be embedded into the theory of a self-interacting d = 1 complex field. This 
consideration clarifies the relationship between real and complex formulations of N = 2 
and N = 4 SCM ( O B  3 and 5). 

It is noteworthy that the dual correspondence between real and complex forms of 
N = 4 SCM has a prototype in the purely bosonic case. Let us interpret the system 
(2.1) and (2.2) as a sector of a more general system: 

I 

where we have introduced a non-propagating field c ( t )  subjected to the constraint 

d (  t )  = Ode( t )  = constant. (A1.4) 

Putting this constant equal to m one arrives at the action (2.1). Alternatively, one may 
implement (A1.4) in (A1.3) with the help of a Lagrange multiplier c p :  

(A1.5) i S + S’=;A-’ dt[ (6)’ - c’( t ) p - *  + 2 ~ (  t )+] .  

Instead of varying cp(  t ) ,  one may vary c(  t )  to get 

c( t )  = -p2+. (A1.6) 

After substituting this solution into (A1.5), the free d = 1 complex field action (Al.1) 
is reproduced. 

Appendix 2. Comparison with the Hamiltonian form of N = 4  SCM [31 

In the original paper [3] from the beginning the quantum case was treated. However, 
no uncertainties appear upon taking the classical limit. 

The Hamiltonian given in [3] is as follows: 

2x,xp - X 2 S a p  

x4 

= i [ p  2 p.+f’( I zz) - - ’+ i f ( -  z) - 2 - -  xx +ifz-’xxl (A2.1) 
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where we have defined 

z = x1 +ix2 Xl=fi($:+i$:) X 2  = J5 ($1 + i$d. 
Using the definition 

iA = [ A ,  HI 
and canonical (anti)commutation relations, one finds the equations of motion to be 

(A2.2) 

These equations coincide with those following from the action (5.9) after identifying 

mf = mf= f z = Yo (A2.3) 

(one may always make f real by an appropriate phase transformation of spinor fields). 
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